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Abstract
The noise power spectral density of a thermal current between two macroscopic dielectric
bodies held at different temperatures and connected only at a quantum point contact is
calculated. Assuming the thermal energy is carried only by phonons, we model the quantum
point contact as a mechanical link, having a harmonic spring potential. In the weak coupling, or
weak link limit, we find the thermal current analog of the well-known electronic shot-noise
expression.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Just as Ohm’s law, relating the electrical current to an applied
potential, breaks down when the quantum mechanical aspects
of the charge carriers becomes important, such as in the
mesoscopic regime; Fourier’s Law of heat conduction suffers
a similar fate [1]. Mesoscopic phonon systems provide
some of the best experimental setups to test the quantum
nature of heat transport, such as the quantization of thermal
conductance [1, 2]. Although, experimental demonstration
of which lagged a decade behind that of its electronic
counterpart [3].

Following this seminal work, nanomechanical systems
have since attracted an increased interest, experimentally
and theoretically, from such diverse areas as quantum
computing [4] to promising research into detecting the
quantum mechanical zero-point motion of a macroscopic
object [5, 6]. Similar to the quantization of electrical
conductance, where each channel of a one-dimensional
conductor can contribute a quantum of electrical conductance,
e2/2π h̄ per spin, in a one-dimensional dielectric each
vibrational mode carries a quantum of thermal conductance
given by πk2

BT/6h̄. Of course one requirement to observe
this quantization is a clean system with minimal scattering,
i.e. ballistic transport. Within the Landauer–Büttiker
formalism, this amounts to setting the transmission matrix to
unity for each mode. The opposite limit of weak transmission
or strong scattering can be equally interesting. For instance in
a system of two conductors separated by a thin tunnel barrier,
such as a scanning tunneling microscope (STM), the electrical

conductance, associated with the tunneling current, is related
to the product of the local density of states on each side of
the barrier [7]. In [8] a thermal analog of an STM, i.e. a
phonon scanning thermal microscope, was proposed, where
the thermal conductance associated with the energy current
between two macroscopic dielectric bodies held at different
temperatures and connected at a single quantum point contact
was found to be related to the local phonon density of states
of each reservoir. Similar work has been done involving the
phonon dominated thermal transport through more complex
connections, such as molecules [9–11].

Here we examine the noise of a thermal current in this
limit of weak transmittance, the shot-noise limit. In the
same way the granularity of the charge carriers, in say a
weak tunneling current, contributes to the current noise, the
analogous behavior for phonons should be observed in a
thermal current1. Experimentally, the ability to detect a single
phonon is an ongoing area of interest [12].

In [8] the thermal current between two insulators weakly
joined by only a mesoscopic link, modeled as a harmonic
spring, was calculated. The actual physical link could be a few
chemical bonds or even a small bridge of material, see figure 1.
The result of [8] was the thermal analog of the well-known
tunneling current formula [7]. In the following sections we
examine the intrinsic noise present in such a thermal current. It
is assumed the two bodies are only weakly coupled, to lowest

1 Due to the bosonic nature of phonons, distinguishing the total energy carried
by a single phonon or two or more with smaller energy would be difficult to
discern.
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Figure 1. Model of two macroscopic dielectric bodies held at
different temperatures TL and TR and joined by a single quantum
point contact. The contact can be taken to be (a) several atomic
bonds with a spring constant K or (b) a small ‘neck’ of dielectric
material of length l and diameter d with an effective spring constant
K = (πd2/4l)Y , where Y is the Young’s modulus of the material.

order in the coupling, this is equivalent to the shot-noise limit
of the electronic counterpart.

2. Model and thermal current

We consider the following model, which is illustrated in
figure 1: two macroscopic dielectric bodies, labeled left (L)
and right (R), act as thermal reservoirs and are held at fixed
temperatures TL and TR, which generates a thermal gradient.
The Hamiltonian for each side is taken, in the harmonic
approximation, as (h̄ = 1)

HI :=
∑

n

ωIn a†
InaIn, I = L, R (1)

where a†
In and aIn are phonon creation and annihilation

operators for the left and right side, which satisfy

[aIn, a†
I ′n′ ] = δnn′δI I ′ (2)

and
[aIn, aI ′n′ ] = [a†

In, a†
I ′n′ ] = 0. (3)

The quantum point contact, or weak mechanical link, is
modeled as a harmonic potential with spring constant K

δH := 1
2 K [uz

L(r0) − uz
R(r0)]2, (4)

where r0 is the point of contact between the two reservoirs and
uz

I is the z-component (the direction normal to each surface) of
displacement field uI (r). This model of the weak link assumes
the compressional strength of the link dominates over other
such displacements such as flexural or torsional. In principle
these interactions could also be included, this would amount to
replacing the spring constant K with a tensor quantity coupling
to different components of the phonon field operator.

The displacement field of each reservoir can be expanded
in terms of phonon creation and annihilation operators as

uI (r) :=
∑

n

√
1

2ρωIn
[aInfIn(r) + a†

Inf∗In(r)], (5)

where fIn(r) are the normalized vibrational eigenfunctions,
and ρ is the mass density.

2.1. Thermal current

Because of energy conservation and using Heisenberg’s
equation-of-motion, a thermal current operator can be defined
as

Îth := ∂t HR = i[H, HR], (6)

where the full Hamiltonian H = HL + HR + δH . Performing
the commutator gives

Îth = iK

2

∑

nn′
ωRn

{
ARn′ − ALn′, hRnaRn − h∗

Rna†
Rn

}
, (7)

where hIn := (2ρωIn)
−1/2 f z

In , AIn := hInaIn + h∗
Ina†

In ,
and {·, ·} is the anticommutator. Treating the coupling as the
perturbation; within linear response, the thermal current is [8]

〈 Îth〉 = 2π K 2
∫ ∞

0
dε ε Nzz

L (r0, ε)Nzz
R (r0, ε)[nB

L(ε) − nB
R(ε)],

(8)
where nB

I (ε) = (exp(εβI) − 1)−1 is the Bose distribution with
β = (kBT )−1, and

Nzz
I (r, ω) =

∑

n

|hIn(r)|2δ(ω − ωnI ) (9)

is the zz component of the local spectral density. It should be
noted that equation (9) is not equal to the zz component of the
local phonon density of states tensor given by [13],

gi j
I (r, ω) =

∑

n

f i
In(r)[ f j

In(r)]∗δ(ω − ωnI ), (10)

but Nzz
I (r, ω) is related to the imaginary part of the retarded

phonon Green’s function and is the relevant quantity of interest
for the present work. For clarity the superscripts zz will be
dropped from here on. Equation (8) is the thermal analog of the
expression for an electronic tunneling current, equation (18).

3. Calculation of the phonon shot-noise

Here we calculate the intrinsic noise2 associated with a thermal
current as calculated in section 2.1. The symmetrized noise is
defined as [14–16]

Sth(ω) := 1
2

∫
dt eiωt

〈{
δ Îth(t), δ Îth(0)

}〉
H
, (11)

where δ Îth := Îth − 〈 Îth〉H .3 In [17] the short time, or high-
frequency (ω → ∞), noise of a general heat current was
studied. Here we investigate the long time or low-frequency
(ω → 0) noise in the weak transmission limit.

To lowest order in the interaction the noise is simply

Sth(ω) := 1
2

∫
dt eiωt

〈{
Îth(t), Îth(0)

}〉
H0

, (12)

2 The noise generated by the system of study and not from external
experimental equipment.
3 Sometimes the factor of 1/2 is omitted and thus will change some subsequent
formulas by a factor of two.
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where H0 := HL + HR,

〈Ô〉H0 = Tr e−βH0 Ô

Tr e−βH0
, (13)

and
Ô(t) = eiH0t Ô e−iH0t . (14)

Using equation (7), along with dropping anomalous terms, the
zero-frequency component of the noise is4

Sth(ω = 0) = 2π K 2
∫ ∞

0
dε ε2 NL(ε)NR(ε)

×
{

nB
L(ε)[1 + nB

R(ε)] + nB
R(ε)[1 + nB

L(ε)]
}

(15)

or

Sth(ω = 0) = 2π K 2
∫ ∞

0
dε ε2 coth

[
ε

2kB

(
1

TR
− 1

TL

)]

× NL(ε)NR(ε)[nB
L(ε) − nB

R(ε)]. (16)

It is illustrative to compare equation (16) to the electronic
expression of the zero-frequency component of the shot-noise,

Sel(ω = 0) = e〈 Îel(eV )〉 coth(eVβ/2), (17)

where for a tunneling current

〈 Îel(eV )〉 = 2πe|T |2
∑

σ

∫
dω ρL(rσ,ω − eV )

× ρR(rσ,ω)[nF
L(ω − eV ) − nF

R(ω)]. (18)

Here |T |2 is the transmission probability, ρI (ω) is the
electronic local density of states, and nF

I (ω) is the Fermi
distribution function.

Assuming, as in most cases of interest, the phonon spectral
density obeys a power-law at low energies, NI (ω) ∝ ωα and
letting TR → 0 for simplicity, the temperature dependence of
the noise is given as

Sth(ω = 0) ∝ T 3+2α. (19)

3.1. Equilibrium noise

In the limit TL → TR there is no net heat current; nonetheless,
there remains thermal fluctuations given by

Sth(ω = 0) = 2kBT 2G th, (20)

where

G th := lim
TL→TR

Ith

TL − TR
= 2π K 2

∫ ∞

0
dε ε NL(ε)NR(ε)

∂nB(ε)

∂T
(21)

is the linear thermal conductance. This is the phonon analog of
Nyquist–Johnson noise. In an electronic system the Nyquist–
Johnson noise is given by

Sel(ω = 0) = 2kBT Gel. (22)

Because the thermal noise is a measure of energy fluctuations,
and not charge, an additional factor of temperature, T , appears
in equation (20), as compared to equation (22). It should also
be noted that, in equilibrium the formal relationship between
the noise and conductivity, equation (20), is independent of
the model used here, and is a consequence of the fluctuation-
dissipation theorem.
4 Because the phonons are noninteracting, in the harmonic approximation
used here, the correlation functions involved can easily be evaluated.

3.2. Fano factor

The Fano factor F , or noise-to-signal ratio, can also be of
interest. In the case of charge shot-noise, from equation (17)
and in the low temperature limit, Fel := Sel/Iel = e, the
charge of the charge carrier. This has been used to measure the
fractional charge, e.g. e/3, e/5, of the quasiparticles predicted
for a quantum Hall fluid [18–21].

Here we determine the Fano factor for a thermal current.
To simplify things let TR → 0, thus

Fth := Sth

Ith
=

∫ ∞
0 dε ε2 NL(ε)NR(ε)nB

L(ε)
∫ ∞

0 dε ε NL(ε)NR(ε)nB
L(ε)

. (23)

Again assuming a power-law form of the phonon spectral
density and re-scaling the integrals by letting x = εβ gives

Fth =
∫ ∞

0 dx x2+2α[ex − 1]−1

∫ ∞
0 dx x1+2α[ex − 1]−1

kBT := C(α)kBT . (24)

Thus the Fano factor is not independent of specific details
of the system, as in the electronic case, but is independent
of all material parameters and only depends on the energy
dependence of the spectral density. For planar surfaces [8, 13]
α = 1 and the integrals can be done analytically giving

Fth = C(1)kBT = 360 ζ(5)

π4
kBT ≈ 3.83 kBT, (25)

where ζ(x) is the Riemann–Zeta function. One could loosely
interpret equation (25) as the average energy of the transmitted
phonons through the weak link.

4. Application: nanometer-scale silicon link

Here we apply the results of the previous sections to calculate
both the thermal current and the thermal noise for the following
realistic, but simple, model. We assume the weak link is a
cylindrical bridge made of silicon (Si) with a length l = 10 nm
and diameter d = 1 nm. This link connects two semi-infinite
Si reservoirs, see figure 1.

The low-energy (much smaller than the Debye energy)
phonon spectral density of Si at a planar surface has been
calculated in [8, 13] and is

N(ε) = Cε, C ≈ 1.3 × 108 cm2 erg−2. (26)

The longitudinal stiffness, or effective spring constant K , of
the mechanical link can be approximated by using the bulk
Young’s modulus Y of Si such that

K = πd2

4l
Y. (27)

For Si, Y ≈ 1.3 × 1012 dyn cm−2; therefore, with the given
dimensions of the link,

K ≈ 1.0 × 104 erg cm−2. (28)

With (26) and (28) the thermal current equation (8) and
the noise equation (16) can now be found within this model,

3
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Figure 2. The thermal current (left) and thermal noise (right) between two dielectric bodies held at a temperature difference T and connected
by a nanometer-scale mechanical link. Silicon is used to model both the thermal reservoirs and the link, see section 4.

see figure 2. Although measuring the thermal current of such
a system is experimentally feasible, as can be seen, the noise,
or fluctuations about the mean, is many orders of magnitude
smaller than the average current and is probably covered up
by the thermal fluctuations of the environment and currently
unmeasurable.

5. Discussion

Besides the experimental ability to detect single phonons, and
thus the phonon shot-noise, further conditions are needed to be
in the shot-noise regime. Within the model considered here,
the temperature must remain well below any resonant modes
of the weak link, also the link should remain in the mesoscopic
regime, i.e. smaller than the phonon coherence length, which
in itself depends on temperature. This would suggest an upper
bound on temperatures of roughly 10 K.

Of course phonon noise is not only of interest for the work
presented here, but could also be used to study other behavior,
such as demonstrating phonon bunching in a phonon Hanbury-
Brown and Twiss experiment [22].
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